Logo de Phytoplant
The potential of near infrared spectroscopy to estimate the content of cannabinoids in Cannabis sativa L.: A comparative study.

Introduction

Currently, the legalization and regulation of Cannabis in many countries is demanding the development of analytical methods which provides reliable results without comprising analysis time. Although gas chromatography (GC) is the preferred technique for the determination of cannabinoids, it requires a series of tedious procedures to finally obtain the result. In this sense, near infrared spectroscopy (NIRS) has been employed in many applications due to its great benefits, requiring a minimal sample preparation, being a quick and non-destructive technique. Herein, a fast economical, robust and environmentally friendly method is proposed allowing the quantification of the main cannabinoids present in Cannabis sativa L. samples.

 

Material and méthods

Cannabis samples of different chemotypes from 11 medicinal varieties registered by Phytoplant at CPVO were selected, namely: Aida, Beatriz, Divina, Juani, Magda, Mati, Moniek, Octavia, Pilar, Sara and Theresa. These plants were cultivated in various locations and collected from different areas of the plant. Thus, a total of 189 dried and grounded Cannabis samples were used for NIRS calibration. A dispersive NIR spectrometer and a Fourier transform near infrared (FT-NIR) were used for comparison. The wet analysis was carried out by GC-FID using squalene as internal standard. Multivariate analysis was applied to treat the collected spectra using principal component analysis (PCA) to reduce the dimensionality of the data matrix and to retain the maximal amount of variability in the spectral data and partial least squares (PLS) regression method to develop predictive models.

Results

Spectral information and wet analysis results were statistically evaluated by means of standard error values. For that purpose, the calibration and subsequent validation of the predictive models were performed, applying scattering correction and using different region of the spectra. Considering the standard error of calibration (SEC) and cross validation (SECV), a suitable method for the determination of different cannabinoids was accomplished. The residual predictive deviation (RPD) statistics were considered to evaluate the cannabinoids prediction, resulting in good prediction models for Δ9-THC, CBC and CBD. In the case of CBN, Δ8-THC, and CBDV, their models may be used for screening purposes while CBG and Δ9-THCV equations are not yet suitable to be used. Therefore, additional samples should be analyzed to increase the population enhancing the prediction models. The comparison of the predictive ability of the models obtained with the dispersive NIR and the FT-NIR spectrometers show no significant differences between them.

Discusion

This is the first time that NIRS technology is employed for quantitative purposes in the Cannabis field. In this sense, the prediction of the content of cannabinoids in dried and grounded samples may be accomplished in reduced time analysis thanks to the implementation of this technique. In this sense, NIRS offers a faster, simpler and greener method than traditional GC analysis.

Go to the publication

Other publications

First Report of Charcoal Rot Caused by Macrophomina phaseolina on Hemp (Cannabis sativa L.) Varieties Cultivated in Southern Spain

See more

Development of ornamental Cannabis sativa L. cultivars: phytochemical, morphological, genetic characterization and propagation aspects

See more

Influence of media composition and genotype for successful Cannabis sativa L. in vitro introduction

See more

Yield of new hemp varieties for medical purposes in a semi-arid Mediterranean environment (Spain)

See more

Cannabinoids and terpenoids yields of the ornamental Cannabis sativa L. cultivar ‘Divina’ characterized by a variegated foliage as morphological marker

See more

Cannabidiol Prevents the Expression of the Locomotor Sensitization and the Metabolic Changes in the Nucleus Accumbent and Prefrontal Cortex Elicited by the Combined Administration of Cocaine and Caffeine in Rats.

See more

Impact of Plant Density and Irrigation on Yield of Hemp (Cannabis sativa L.) in a Mediterranean Semi-arid Environment

See more

Tetrahydrocannabinolic acid is a potent PPARγ agonist with neuroprotective activity.

See more

Binding and Signaling Studies Disclose a Potential Allosteric Site for Cannabidiol in Cannabinoid CB2 Receptors.

See more

Cannabigerol Action at Cannabinoid CB1 and CB2 Receptors and at CB1–CB2 Heteroreceptor Complexes.

See more

Seeking suitable agronomical practices for industrial hemp (Cannabis sativa L.) cultivation for biomedical applications.

See more

Cannabidiol skews biased agonism at cannabinoid CB1 and CB2 receptors with smaller effect in CB1-CB2 heteroreceptor complexes.

See more

Potentiation of cannabinoid signaling in microglia by adenosine A2A receptor antagonists

See more

Pharmacological potential of varinic-, minor-, and acidic phytocannabinoids

See more

Pharmacological data of cannabidiol- and cannabigerol-type phytocannabinoids acting on cannabinoid CB1, CB2 and CB1/CB2 heteromer receptors.

See more

Untargeted characterization of extracts from Cannabis sativa L. cultivars by gas and liquid chromatography coupled to mass spectrometry in high resolution mode.

See more

A Comparative In Vitro Study of the Neuroprotective Effect Induced by Cannabidiol, Cannabigerol, and Their Respective Acid Forms: Relevance of the 5-HT1A Receptors.

See more

Exploring the mysteries of cannabis through gas chromatography

See more

Biological Activity of Cannabis sativa L. Extracts Critically Depends on Solvent Polarity and Decarboxylation.

See more

Thermal desorption-ion mobility spectrometry: A rapid sensor for the detection of cannabinoids and discrimination of Cannabis sativa L. chemotypes

See more

Similarities and differences upon binding of naturally occurring Δ9-tetrahydrocannabinol-derivatives to cannabinoid CB1 and CB2 receptors

See more

Politica de Calidad

See more

Ayudas de la Unión Europea para el autoconsumo fotovoltaico

See more

Other services

cannabis cuttings Plant material

Check our Variety catalogue

women at lab Technical assistance

Experience and scientific rigor to walk by your side in your project.

cannabis cutting Licensable technology

Use our varieties and patented technological processes.

Woman at lab Research

R+D+i in cultivation, breeding and extraction.

Ask for information

Can we be of help to you? Do you have any questions about us? Write to us and we will contact you as soon as possible.

To enable the functionality of sending messages from the website we need you to accept technical cookies, as we use Google's reCAPTCHA 3 to prevent messages from fraudulent bots.